## KURIKULUM STANDARD SEKOLAH MENENGAH

# MATHEMATICS FORM 3

#### Authors Chiu Kam Choon Vincent De Selva A/L Santhanasamy Punithah Krishnan Raja Devi Raja Gopal

**Editor** Premah A/P Rasamanie

#### **Designers** Lim Fay Lee Nur Syahidah Mohd Sharif

Illustrators Asparizal Mohamed Sudin Mohammad Kamal B Ahmad



# Penerbitan Pelangi Sdn Bhd.

2019



#### Book Series No: FT083002

KPM2019 ISBN 978-983-00-9651-3 First Published 2019 © Ministry of Education Malaysia

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, either electronic, mechanical, photocopying, recording or otherwise, without the prior permission of Director General of Education Malaysia, Ministry of Education Malaysia. Negotiation are subject to an estimation of royalty or an honorarium.

Published for the Ministry of Education Malaysia by: PENERBITAN PELANGI SDN. BHD. 66, Jalan Pingai, Taman Pelangi, 80400 Johor Bahru, Johor Darul Takzim.

Layout and Typesetting: PENERBITAN PELANGI SDN. BHD. Font type: Times New Roman Font size: 11 poin

Printed by: THE COMERCIAL PRESS SDN. BHD. Lot 8, Jalan P10/10, Kawasan Perusahaan Bangi, Bandar Baru Bangi, 43650 Bangi, Selangor Darul Ehsan.

#### ACKNOWLEDGEMENTS

The publishing of this textbook involves cooperation from various parties. Our wholehearted appreciation and gratitude goes out to all involving parties:

- Committee members of *Penambahbaikan Pruf Muka Surat*, Textbook Division, Ministry of Education, Malaysia.
- Committee members of *Penyemakan Pembetulan Pruf Muka Surat*, Textbook Division, Ministry of Education, Malaysia.
- Committee members of *Penyemakan Naskah Sedia Kamera*, Textbook Division, Ministry of Education, Malaysia.
- Officers in Textbook Division and the Curriculum Development Division, Ministry of Education, Malaysia.
- Chairperson and members of the Quality Control Panel.
- Editorial Team and Production Team, especially the illustrators and designers.
- Everyone who has been directly or indirectly involved in the successful publication of this book.



| Introduction    |                                                                           | v   |
|-----------------|---------------------------------------------------------------------------|-----|
| Symbols and For | mulae                                                                     | vii |
| CHAPTER         | Indices                                                                   | 1   |
|                 | 1.1 Index Notation                                                        | 2   |
|                 | 1.2 Law of Indices                                                        | 6   |
| CHAPTER         | Standard Form                                                             | 30  |
| (2)             | 2.1 Significant Figures                                                   | 32  |
|                 | 2.2 Standard Form                                                         | 37  |
| CHAPTER         | Consumer Mathematics: Savings and Investments,<br>Credit and Debt         | 50  |
|                 | 3.1 Savings and Investments                                               | 52  |
|                 | 3.2 Credit and Debt Management                                            | 73  |
| CHAPTER         | Scale Drawings                                                            | 86  |
| 4               | 4.1 Scale Drawings                                                        | 88  |
| CHAPTER         | Trigonometric Ratios                                                      | 106 |
| 5               | 5.1 Sine, Cosine and Tangent of Acute Angles in Right-angled<br>Triangles | 108 |





| CHAPTER    | Angles and Tangents of Circles                                       | 128 |
|------------|----------------------------------------------------------------------|-----|
| 6          | 6.1 Angle at the Circumference and Central Angle Subtended by an Arc | 130 |
|            | 6.2 Cyclic Quadrilaterals                                            | 144 |
|            | 6.3 Tangents to Circles                                              | 150 |
|            | 6.4 Angles and Tangents of Circles                                   | 160 |
| CHAPTER    | Plans and Elevations                                                 | 168 |
|            | 7.1 Orthogonal Projections                                           | 170 |
|            | 7.2 Plans and Elevations                                             | 182 |
| CHAPTER    | Loci in Two Dimensions                                               | 198 |
|            | 8.1 Loci                                                             | 200 |
|            | 8.2 Loci in Two Dimensions                                           | 204 |
| CHAPTER    | Straight Lines                                                       | 224 |
| 9          | 9.1 Straight Lines                                                   | 226 |
| Answers    |                                                                      | 252 |
| Glossary   |                                                                      | 262 |
| References |                                                                      | 263 |
| Index      |                                                                      | 264 |



# Introduction

This Form 3 Mathematics Textbook is prepared based on *Kurikulum Standard Sekolah Menengah (KSSM)*. This book contains 9 chapters arranged systematically based on Form 3 Mathematics *Dokumen Standard Kurikulum dan Pentaksiran (DSKP)*.

At the beginning of each chapter, students are introduced to stimulating materials related to daily life to stimulate their thinking about the topic. In addition, Learning Standard and word list also give a visual summary about the chapter's content.

#### This book contains the following special features:

|                                | Description                                                                                                                                            |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| What will you learn?           | Contains learning standard that students will learn in each chapter.                                                                                   |
| Why do you learn this chapter? | Applications of knowledge in this chapter in related career fields.                                                                                    |
| 🛞 Exploring Era                | History of ancient academy or original exploration of the chapter in Mathematics.                                                                      |
| WORD B A N K                   | Word list contained in each chapter.                                                                                                                   |
| Individual In pairs In groups  | Helps students to understand the basic mathematical concept via individual, pair or group activities.                                                  |
| BULLETIN                       | Gives additional information about the chapter learned.                                                                                                |
|                                | Questions that test students' capability to understand certain technique in each chapter.                                                              |
|                                | Grabs students' attention to additional facts that<br>need to be reminded of, mistakes that students<br>commonly make, and carelessness to be avoided. |
| TIPS                           | Exposes students to additional knowledge that they need to know.                                                                                       |
| 🗱 SMART MIND                   | Presents mind-stimulating questions for enhancement of students' critical and creative thinking.                                                       |



|                     | Description                                                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Exposes students to the use of technological tools in the learning of mathematics.                                                                                                        |
|                     | Develops communication skills mathematically.                                                                                                                                             |
| FLASHBACK           | Helps students to remember what they have learnt.                                                                                                                                         |
| SMART FINGER        | Shows the use of scientific calculators in calculations.                                                                                                                                  |
| 000000              | Enables students to carry out assignments and then present their completed work in class.                                                                                                 |
|                     | Test students' understanding on the concepts they have learnt.                                                                                                                            |
| 4                   | Indicates HOTS questions to help in developing students' higher order thinking skills.                                                                                                    |
| Dynamic Challenge 🙀 | Prepares more diversified exercises which incorporate the elements of LOTS, HOTS, TIMSS and PISA assessment.                                                                              |
|                     | Enables students to scan QR Code using mobile device.                                                                                                                                     |
|                     | Covers applicable concepts of digital tool calculators,<br>hands on activities and games that aim to provides<br>additional activities to effectively enhance students'<br>understanding. |
| CONCEPT MAP         | Overall chapter summary that students learnt.                                                                                                                                             |
| ( SELF-REFLECT )    | Looks back whether students have achieved the learning standard.                                                                                                                          |
| Checking Answers    | Checks answers with alternative methods.                                                                                                                                                  |
| STEMA               | Activities with elements of Science, Technology,<br>Engineering and Mathematics.                                                                                                          |



# Symbols and Formulae

## SYMBOLS

|                   | root                                      | ≥ | is more than or equal to |
|-------------------|-------------------------------------------|---|--------------------------|
| π                 | pi                                        | < | is less than             |
| a:b               | ratio of <i>a</i> to <i>b</i>             | ≤ | is less than or equal to |
| $A \times 10^{n}$ | standard form where                       | Δ | triangle                 |
|                   | $1 \le A < 10$ and <i>n</i> is an integer |   | angle                    |
| =                 | is equal to                               | 0 | degree                   |
| $\approx$         | is approximately equal to                 | ' | minute                   |
| ¥                 | is not equal to                           | " | second                   |
| >                 | is more than                              |   |                          |
|                   |                                           | 1 |                          |

### FORMULAE





http://bukutekskssm. my/Mathematics/F3/ Index.html Download the free *QR Code* scanner to your mobile devices. Scan *QR Code* or visit the website http://bukutekskssm.my/Mathematics/F3/Index.html to download files for brainstorming. Then, save the downloaded file for offline use.

Note: Students can download free *GeoGebra and Geometer's Sketchpad* (*GSP*) software to open related files.



# Answers 🚄

#### **CHAPTER 1 Indices**

#### MIND TEST 1.1a

| l. | Base           | Index |
|----|----------------|-------|
|    | 5              | 3     |
|    | -4             | 7     |
|    | $\frac{1}{2}$  | 10    |
|    | т              | 6     |
|    | п              | 0     |
|    | 0.2            | 9     |
|    | $-\frac{3}{7}$ | 4     |
|    | x              | 20    |
|    | $2\frac{1}{3}$ | 2     |
|    | 8              | 1     |
|    |                |       |

| 2. | (a) | 66                            |
|----|-----|-------------------------------|
|    | (b) | (0.5) <sup>7</sup>            |
|    | (c) | $\left(\frac{1}{2}\right)^4$  |
|    | (d) | $(-m)^{5}$                    |
|    | (e) | $\left(1\frac{2}{3}\right)^3$ |
|    | (f) | $\left(-\frac{1}{n}\right)^6$ |

- **3.** (a)  $(-3) \times (-3) \times (-3)$ (b)  $2.5 \times 2.5 \times 2.5 \times 2.5$ (c)  $\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}$ 
  - (d)  $(-2\frac{1}{4}) \times (-2\frac{1}{4}) \times (-2\frac{1}{4})$
  - (e)  $k \times k \times k \times k \times k \times k$
  - (f)  $(-p) \times (-p) \times (-p) \times (-p) \times (-p) \times (-p) \times (-p)$ (g)  $\frac{1}{m} \times \frac{1}{m} \times \frac{1}{m}$
  - (h)  $(3n) \times (3n) \times (3n) \times (3n) \times (3n)$

#### MIND TEST 1.1b

(b)  $5^6$  (c)  $\left(\frac{4}{5}\right)^3$ **1.** (a) 3<sup>4</sup> (e)  $(-4)^7$  (f)  $\left(-\frac{1}{4}\right)^2$ (d)  $(0.2)^5$ 

#### MIND TEST 1.1c

1. (a) 6561 (b) -1024 (c) 15.625(d) -32.768 (e)  $\frac{243}{32.768}$  (f)  $\frac{1}{1.296}$ (g)  $2\frac{7}{9}$  (h)  $-12\frac{19}{27}$ 

#### MIND TEST 1.2a

- 1. (a)  $3^7$  (b)  $(-0.4)^8$  (c)  $\left(\frac{4}{7}\right)^9$ (d)  $\left(-1\frac{2}{5}\right)^{10}$  (e)  $-6m^9$  (f)  $\frac{n^{12}}{5}$ (g)  $-15x^7$ (h)  $y^{12}$
- MIND TEST 1.2b 1. (a)  $5^5 \times 9^5$ (b)  $(0.4)^3 \times (1.2)^9$ (d)  $-\frac{3}{2}k^6p^{11}$ (c)  $4x^6y^7$

#### MIND TEST 1.2c (b) 7<sup>2</sup> **1.** (a) 4 (d) $3xy^3$ (e) *m* **2.** (a) $8^{\textcircled{8}} \div 8^4 \div 8^3 = 8$

- (b)  $m^4 n^{6} \div m^{2} n^5 = m^2 n$ (c)  $\frac{m^{10}n^4 \times m^{[2]}n^2}{m^7n} = m^5 n^{[5]}$ (d)  $\frac{27x^3y^6 \times xy^{[2]}}{[9]x^2y^3} = 3x^{[2]}y^5$

#### MIND TEST 1.2d

| 1. | (a) 12 <sup>10</sup> | (b) 3 <sup>20</sup> | (c) 7 <sup>6</sup> | (d) $(-4)^2$    |
|----|----------------------|---------------------|--------------------|-----------------|
|    | (e) $k^{24}$         | (f) $g^{26}$        | (g) $(-m)^{12}$    | (h) $(-c)^{21}$ |
| 2. | (a) True             | (b) False           | (c) False          | (d) False       |

(c)  $m^4 n^5$ 

(f) -5h

**3.** 8

#### MIND TEST 1.2e

| 1. | (a) $2^2 \times 3^8$           | (b) $11^9 \times 9^{15}$       | (c) $13^6 \div 7^{12}$ |
|----|--------------------------------|--------------------------------|------------------------|
|    | (d) $5^{15} \times 3^{20}$     | (e) $m^{15}n^{20}p^{10}$       | (f) $16w^8x^{12}$      |
|    | (g) $\frac{729a^{30}}{b^{24}}$ | (h) $\frac{8a^{15}}{27b^{12}}$ |                        |
| 2. | (a) $11^2 \times 4^4$          | (b) $3^3 \times 6^2$           | (c) $\frac{4^4}{6^6}$  |
|    | (d) $(-4)^6 \times (-3)^6$     | 5) <sup>4</sup>                | (e) $x^4y^4$           |
|    | (f) $h^{10}k^6$                | (g) $m^{11}n^{15}$             | (h) $b^2 d^6$          |
| 3. | (a) 6 <i>mn</i> <sup>8</sup>   | (b) $10x^8v^3$                 | (c) <i>de</i>          |

#### MIND TEST 1.2f

| 1. | (a) $\frac{1}{5^3}$                 | (b) $\frac{1}{8^4}$                  | (c) $\frac{1}{x^8}$                 | (d) $\frac{1}{y^{16}}$               |
|----|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|
|    | (e) <i>a</i> <sup>4</sup>           | (f) 20 <sup>2</sup>                  | (g) $\frac{3}{n^4}$                 | (h) $-\frac{5}{n^6}$                 |
|    | (i) $\frac{2}{7m^5}$                | (j) $-\frac{3}{8m^4}$                | (k) $\left(\frac{5}{2}\right)^{12}$ | (1) $\left(-\frac{7}{3}\right)^{14}$ |
|    | $(m)\left(\frac{y}{x}\right)^{10}$  | (n) $\left(\frac{3y}{2x}\right)^4$   | (o) $(2x)^5$                        |                                      |
| 2. | (a) 5 <sup>-4</sup>                 | (b) 8 <sup>-3</sup>                  | (c) $m^{-7}$                        | (d) $n^{-9}$                         |
|    | (e) $\frac{1}{10^{-2}}$             | (f) $\frac{1}{(-4)^{-3}}$            | (g) $\frac{1}{m^{-12}}$             | (h) $\frac{1}{n^{-16}}$              |
|    | (i) $\left(\frac{7}{4}\right)^{-9}$ | (j) $\left(\frac{y}{x}\right)^{-10}$ |                                     |                                      |
| 3. | (a) $\frac{1}{4}$                   | (b) $\frac{2^4}{3^{14}}$             | (c)                                 | $2^6 	imes 5^2$                      |
|    | (d) $\frac{1}{3m^3n^7}$             | (e) $\frac{1}{8m^8}$                 | (f)                                 | $\frac{m^6n}{18}$                    |

#### MIND TEST 1.2g 1. (a) $125^{\frac{1}{3}}$ (b) $2 \ 187^{\frac{1}{7}}$ (c) $(-1 \ 024)^{\frac{1}{5}}$ (d) $n^{\frac{1}{10}}$ **2.** (a) $\sqrt{4}$ (b) $\sqrt[5]{32}$ (c) $\sqrt[3]{-729}$ (d) $^{15}\sqrt{n}$ **3.** (a) 7 (b) -6 (c) 8 (d) -8

| $\frac{a^{n}}{(a^{m})^{\frac{1}{2}}} (729^{\frac{5}{2}} 121^{\frac{1}{2}} w^{\frac{3}{2}} x^{\frac{3}{2}} (\frac{16}{81})^{\frac{3}{2}} (\frac{\mu}{k})^{\frac{3}{2}}}{(\frac{16}{81})^{\frac{3}{2}}} (\frac{\mu}{k})^{\frac{3}{2}}} (\frac{\mu}{k})^{\frac{3}{2}} (\frac{\mu}{k})^{\frac{3}{2}}}{(\frac{16}{81})^{\frac{3}{2}}} (\frac{\mu}{k})^{\frac{3}{2}}} (\frac{\mu}{k})^{\frac{3}{2}}} (\frac{\mu}{k})^{\frac{3}{2}} (\frac{\mu}{k})^{\frac{3}{2}}} (\frac{\mu}{k$                                                                                                                           |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| $\frac{n\sqrt{a^{m}}}{\sqrt{a^{m}}} \frac{6\sqrt{729^{5}}}{\sqrt{121^{3}}} \sqrt{121^{3}} \frac{7\sqrt{w^{3}}}{\sqrt{w^{3}}} \frac{5\sqrt{x^{2}}}{\sqrt{x^{2}}} \frac{4\sqrt{160^{3}}}{\sqrt{181}} \frac{3\sqrt{h}}{\sqrt{k}}^{2}}{(\frac{n\sqrt{a}}{\sqrt{a}})^{m}} \frac{6\sqrt{7295}}{(\sqrt{7295})^{5}} \frac{(\sqrt{121})^{3}}{(\sqrt{w})^{3}} \frac{(5\sqrt{x})^{2}}{(\sqrt{\sqrt{81}})^{2}} \frac{(4\sqrt{160})^{3}}{(\sqrt{\sqrt{k}})^{2}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{\sqrt{k}})^{2}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{\sqrt{2}})^{3}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{\sqrt{160}})^{3}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{\sqrt{160}})^{3}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{\sqrt{160}})^{3}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{\sqrt{160}})^{3}} \frac{(\sqrt{\sqrt{160}})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})^{3}} \frac{(\sqrt{160})^{3}}{(\sqrt{160})$ |  |  |  |  |
| $\begin{array}{c} (n\sqrt{a})^{m} (\sqrt[6]{729})^{5} (\sqrt{121})^{3} (\sqrt[7]{w})^{3} (\sqrt[5]{x})^{2} (\sqrt[4]{16})^{3} (\sqrt[3]{h})^{2}} \\ \hline (n\sqrt{a})^{m} (\sqrt[6]{729})^{5} (\sqrt{121})^{3} (\sqrt[7]{w})^{3} (\sqrt[5]{x})^{2} (\sqrt[4]{16})^{3} (\sqrt[3]{h})^{2}} \\ \hline (n\sqrt{a})^{m} (\sqrt[6]{729})^{5} (\sqrt{121})^{3} (\sqrt[7]{w})^{3} (\sqrt[5]{x})^{2} (\sqrt[4]{16})^{3} (\sqrt[3]{h})^{2}} \\ \hline (n\sqrt{a})^{m} (\sqrt[6]{729})^{5} (\sqrt{121})^{3} (\sqrt[7]{w})^{3} (\sqrt[5]{x})^{2} (\sqrt[4]{16})^{3} (\sqrt[3]{h})^{2}} \\ \hline (n\sqrt{a})^{m} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{2} (\sqrt[4]{h})^{3} (\sqrt[3]{h})^{2}} (\sqrt[4]{h})^{3} (\sqrt[3]{h})^{2}} \\ \hline (n\sqrt{a})^{m} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[5]{x})^{2} (\sqrt[4]{h})^{3} (\sqrt[3]{h})^{2}} (\sqrt[4]{h})^{3} (\sqrt[3]{h})^{2}} \\ \hline (n\sqrt{a})^{m} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{2} (\sqrt[6]{x})^{3} (\sqrt[5]{x})^{2} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{2}} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{2}} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3}} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3}} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3}} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3} (\sqrt[6]{x})^{3}} (\sqrt[6]{x})^{3} (\sqrt[6]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| MIND TEST       1.2i         1. (a) 9       (b) 4       (c) 4       (d) 8         (e) 256       (f) 16       (g) 216       (h) 343         (i) 7       (j) 1 331       (k) 169       (l) 1 1000         2. (a) $\Box \sqrt{6561}$ , $3\Box 9\Box, 81\Box, 243^{\frac{4}{3}}, 27^{\frac{3}{3}}$ (b) $25^{\frac{3}{3}}$ , $125\Box, 625^{\frac{13}{4}}$ , $\Box \sqrt{15} 625\Box, 3 125^{\frac{3}{3}}$ , $5\Box$ (mind Test)       2.1b         1. (a) $\frac{c^{7}}{de}$ (b) $mn^{6}$ (c) $\frac{10x}{3z^{2}}$ (c) $366$ 310       300         1. (a) $\frac{1}{2401}$ (b) $648$ (c) $86400$ (c) $\frac{125}{3}$ (c) $\frac{125}{3}$ (c) $\frac{125}{3}$ (c) $\frac{125}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| <b>1.</b> (a) $9$ (b) $4$ (c) $4$ (d) $8$<br>(e) $256$ (f) $16$ (g) $216$ (h) $343$<br>(i) $7$ (j) $1 \ 331$ (k) $169$ (l) $1 \ 1000$<br><b>2.</b> (a) $\boxed{2}\sqrt{6}\ 561^{\square}\ 3^{\square}\ 9^{\square}\ 81^{\square}\ 243^{\square}\ 243^{\square}\ 27^{\square}\ (b) \ 25^{\square}\ 125^{\square}\ 625^{\square}\ 3125^{\square}\ 51^{\square}\ 51^{\square}\ 51^{\square}\ 5260$<br><b>1.</b> (a) $47\ 000$ 50 000<br>(b) $25^{\square}\ 125^{\square}\ 625^{\square}\ 3125^{\square}\ 51^{\square}\ 51^{\square}\ 5260$<br><b>1.</b> (a) $47\ 000$ 50 000<br>(b) $5\ 260$ 5300 5000<br>(c) $306$ 310 300<br>(d) $20.7\ 21\ 20$<br>(e) $8.60\ 8.6\ 9$<br>(f) $5.90\ 5.9\ 6$<br>(g) $0.694\ 0.69\ 0.7$<br>(h) $0.0918\ 0.092\ 0.099$<br>(i) $0.00571\ 0.006$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| (i) 7 (j) 1 331 (k) 169 (l) 1 000<br>2. (a) $\boxed{2}\sqrt{6} 561 \boxed{1}, 3 \boxed{4}, 9 \boxed{2}, 81 \boxed{1}, 243 \boxed{5}, 27^{\frac{13}{3}}$<br>(b) $25 \boxed{2}, 125 \boxed{1}, 625^{\frac{13}{4}}, \boxed{2}\sqrt{15} 625 \boxed{1}, 3125 \boxed{5}, 5 \boxed{3}$<br>MIND TEST 1.2j<br>1. (a) $\frac{c^{7}}{de}$ (b) $mn^{6}$ (c) $\frac{10x}{3z^{2}}$ (c) $86400$ (c) $8660$<br>2. (a) $\frac{1}{2401}$ (b) $648$ (c) $86400$ (c) $86400$ (c) $1002$ (c) $860$<br>(c) $860$ (c) $8.60$ (c) $1002$ (c) $8.60$ (c) $8.60$ (c) $8.60$ (c) $1002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| MIND TEST       1.2j       (c) $306$ $310$ $300$ 1. (a) $\frac{c^7}{de}$ (b) $mn^6$ (c) $\frac{10x}{3z^2}$ (e) $8.60$ $8.6$ 9         2. (a) $\frac{1}{2401}$ (b) $648$ (c) $86400$ (h) $0.0918$ $0.092$ $0.09$ (b) $7$ (c) $125$ (c) $125$ (c) $102$ (c) $122$ (c) $122$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| <b>2.</b> (a) $\frac{1}{2401}$ (b) 648 (c) 86 400 (b) 0.0918 (c) 0.092 (c) 0.09<br>(c) $7$ (c) 01 (c) $\frac{125}{2}$ <b>2.</b> (c) 12 02 (c) 282 (c) 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| (d) $\frac{1}{54}$ (e) 81 (f) $\frac{1}{8}$ 2. (d) $12.02$ (b) 2.85 (c) 11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 3. $3456$ 4. $48$ (a) $24$ (b) $6.01$ (c) $15$ 3. $3456$ 4. $48$ (g) $20$ (h) $36.0$ Dynamic Challenge (a)       (b) $15572232$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Test Yourself       I. (a) True       (b) False (25)       (c) False (1)       (d) False (32x <sup>15</sup> )       (e) True       (f) False $\left(\frac{2}{a^4}\right)$ I. (a) $3.5 \times 10^1$ (b) $4.81 \times 10^2$ (c) $5.075 \times 10^3$ (d) $9.725 \times 10^1$ (e) $3.1243 \times 10^3$ (f) $9.0 \times 10^{-1}$ (g) $2.3 \times 10^{-1}$ (h) $3.75 \times 10^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| (g) False $[({}^{5}\sqrt{32})^{2}]$ (h) True (i) False $(\frac{1}{625 \text{ m}})$<br>2. $5^{\frac{14}{5}} \times 5^{5}$ $5^{3(\frac{1}{3})}$<br>(d) $5 070$ (e) $91\ 000$ (f) $0.62$<br>(g) $0.0729$ (h) $0.001034$ (i) $0.0008504$<br>(a) $1.05 \times 10^{6}$ metres (b) $2.16 \times 10^{11}$ bytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| $\frac{5^{12} \div 5^{[3]}}{(\sqrt{25})^{[9]}}$ (a) $1.65 \times 10^{-11}$ metres (b) $2.16 \times 10^{-5}$ system<br>(c) $7.5 \times 10^{11}$ litres (d) $9.5 \times 10^{-5}$ metres<br>(e) $1.23 \times 10^{-7}$ metres (f) $8.9 \times 10^{-17}$ metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| $\left(\frac{1}{5}\right)^{\underline{\square}}$ $\left(\frac{\square}{\sqrt{125}}\right)^{\underline{\square}}$ MIND TEST 2.2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| $(5^{6})^{\frac{3}{2}} \qquad \frac{5^{6} \times 5^{15}}{5^{2}} \qquad 1.  (a)  5.97 \times 10^{4} \qquad (b)  3.93 \times 10^{6} \\ (c)  1.021 \times 10^{8} \qquad (d)  1.574 \times 10^{5} \\ (e)  5.46 \times 10^{8} \qquad (f)  8.59 \times 10^{4} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| <b>5.</b> $2^{0}$ $as$ $\frac{1}{3^{-4}}$ $(\frac{5}{5})$ $as$ $7^{2} \times 5^{-3}$ $as$ $(5^{-1} \times \sqrt{25})^{3}$ (k) 7.08 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (1) 8.083 × 10 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Skills Enhancement       1. (a) $1.48 \times 10^8$ (b) $3.75 \times 10^{-8}$ $\mu^7$ $\chi^4 \chi^7$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 1. (a) $\frac{n}{m}$ (b) $\frac{x \cdot y}{2}$ (c) $xy^2$ (e) $4.5 \times 10^{-3}$ (f) $6.4 \times 10^3$ 2. (a) $\frac{4}{125}$ (b) $\frac{25}{7}$ (c) 1 (d) 2 (e) 7 (f) 1       2. $3.126 \times 10^3$ (f) $6.4 \times 10^3$ 3. 63       4. $10^3$ micrometres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |



#### MIND TEST 2.2d

- 1.  $2.02 \times 10^5 \,\mathrm{m}^3$
- 2. (a)  $9.17 \times 10^7$  km (b)  $4.44 \times 10^9$  km (c)  $4.35 \times 10^9$  km Dynamic Challenge

#### Test Yourself

- (a)
   24 000
   (b)
   54 300
   (c)
   9 000
   (d)
   300 000

   (e)
   5 000
   (f)
   5.00
   (g)
   0.28
   (h)
   40

   (i)
   420
   (j)
   10
   (k)
   1.04
   (l)
   502
- 2. (a)  $3.48 \times 10^8$  (b)  $5.75 \times 10^4$  (c)  $5.11 \times 10^4$ (d)  $2.96 \times 10^9$  (e)  $8.84 \times 10^{-2}$  (f)  $3.31 \times 10^{-4}$ (g)  $9.77 \times 10^{-8}$  (h)  $5.43 \times 10^4$
- **3.** (a) -2, 0.025, 0.025, 1.35, 1.375 (b) -3, 0.0034, 5.74, 0.0034, 5.7434 (c) -3, 0.0042, 1.75, 0.0042, 1.7458 (d) -3, 0.0043, 3.7, 0.0043, 3.657
- **4.** (a)  $1.2 \times 10^4$  (b) RM214 **5.** 97 people

#### Skills Enhancement

- **1.** (a)  $5.57 \times 10^2 \text{ m}^2$  (b) RM10 824
- **2.** (a) (i)  $70.9 \text{ kmh}^{-1}$  (ii)  $47.1 \text{ kmh}^{-1}$  (iii)  $68.4 \text{ kmh}^{-1}$

#### Self Mastery

- 1. (a) Mercury =  $7.48 \times 10^7 \text{ km}^2$ Neptune =  $7.62 \times 10^9 \text{ km}^2$ Jupiter =  $6.14 \times 10^{10} \text{ km}^2$ (b)  $6.133 \times 10^{10} \text{ km}^2$
- **2.** (a) 4.37 g (b) 4.99 g

#### CHAPTER 3 Consumer Mathematics: Savings and Investments, Credit and Debt

#### MIND TEST 3.1a

2.

- 1. For a well-planned life in the future
  - As an additional income
  - For emergency use
  - Open a Fixed Deposit Account
    This is because the money will not be used for a given period
  - Higher interest rates are also offered
- **3.** Cheques are commonly used by businessmen/ businesswomen for payments in large amounts while most people only make daily payments in small amounts.

#### MIND TEST 3.1b

**1.** RM610.10 **2.** RM1 159.70 **3.** RM106.17

#### MIND TEST 3.1c

- 1. Return on investment is the value of return of the investment.
- **2.** (a) RM2 000 (b) RM24 000 + RM230 000 = RM254 000
- 3. RM320

#### MIND TEST 3.1d

- **1.** The higher the risk, the higher the return.
- 2. Bank Negara Malaysia guarantees on deposits in the bank.
- 3. It can be cashed immediately.
- 4. Real estate's price usually increases but rarely falls.

- 5. (a) Real estate
  - (b) Risk potential = Low Return = High Liquidity = Low
  - (c) Mr Osman's action is wise because our country focuses on the tourism sector. Therefore, it is appropriate to set up the homestay. Besides, the investment in the homestay has low risk.

#### MIND TEST 3.1e

- 1. Purchase of shares every month or periodically but not at a lump sum.
- 2. (a) Investor 2. This is because the purchase of 2 shares on a regular basis allows him to purchase many units of shares and the average cost per unit can be reduced.
  - (b) RM1.80. 13 268 units of shares
  - (c) The average cost per unit share can be reduced• Reduce the risk of loss

#### MIND TEST 3.1f

- 1. (a) Mr Rasamanie Real estates (Low Risk) Mr Nik Izwan – Savings (Low Risk) Real estates (Low Risk) Shares (High Risk)
  - (b) Mr Nik Izwan. This is because if there is a loss in one of the investments, it can be covered by other investments.
  - (c) Economic factor and political factor of the location of the real estate.
- **2.** 23.16%

#### MIND TEST 3.2a

- 1. Personal loans are short term loans for consumer use.
- **2.** Prepare your budget
- Plan your expenses
- **3.** Credit card He is not require to pay interest if his debts are settled in interest-free period as compared to loan.

#### Dynamic Challenge 🉀

#### Test Yourself

- 1. Savings is the balance after making mandatory expenditure from salary.
- **2.** High interest rate.
  - Savings period is subject to a specified time.

#### **3.** RM8 640

- Skills Enhancement1. Increase the number of shares purchased and the
- average cost per unit will be lower than if purchased all at once.
- 2. Purchase of land lots, houses, factories and so on.
- 3. (a) Dividend (b) Capital gain (c) Bonus share
- **4.** (a) Lee Chong needs to have the knowledge to assess and select shares while Mokhtar's investment is assisted by a professional company.
  - (b) Lee Chong's risk is higher compared to Mokhtar's.
- 5. RM300 6. (a) RM360 (b) 3 000 units (c) 9 000 units
- 7. RM1 000, 3%, 3 years 8. RM634.12



#### Self Mastery

- RM3 750 8.85% 1. 2. 3.
  - RM7 000 4. RM400 6. RM52.87
- 5. RM233.33
- 7. (a) Masnah Rasam's view is not recommended because she has to pay interest.
  - (b) RM320, 8%
  - (c) Cash, because no interest needs to be paid.
- 8. RM15 000
- 9. 4%
- 10. RM900

#### **CHAPTER 4 Scale Drawings**

#### MIND TEST 4.1a

1. Diagram 1, Diagram 2, Diagram 4



- 4. 6 cm
- MIND TEST 4.1c
- **2.** (b) (i)  $1:\frac{1}{2}$
- MIND TEST 4.1d
- 1 944 cm<sup>2</sup> 1. 2. 34.8 cm  $560 \text{ m}^2$ **4.** 20 cm 3. (b) 2 hours 24 minutes 5. (a)  $7\ 200\ m^2$

(ii) 1:2

#### Dynamic Challenge

- Test Yourself
- 1 1: 1. 5
- 2. (a) I and III
  - $III = 1 : \frac{1}{2}$

(b) I = 1 : 2

- (c) (i)  $I = 1.5 \text{ cm}^2$ (ii) I = 1 : 4  $III = 1 : \frac{1}{4}$  $III = 24 \text{ cm}^2$ 
  - The ratio of area is not proportional to the scale of the scale drawings.
- (a) 17.0 cm (b)  $203.5 \text{ m}^2$ 3.

#### **Skills** Enhancement

- 540 kmh<sup>-1</sup> 1.
- 2.  $50 \text{ cm} \times 50 \text{ cm}$  tile. RM633.20 can be saved. 3.
  - (a) 2 829 m<sup>2</sup> (b) 4:13 (c)  $1 971 \text{ m}^2$ (d) RM3 960
- Self Mastery
- 1. (a)  $48 \text{ m}^2$ (b) 8:1 (c)  $1 440 \text{ m}^3$ (a)  $8 400 \text{ m}^2$ 2. (b) 1 : 500. The most relevant value for scale.
  - (c) (i) 60 pieces (ii) RM31 500

#### **CHAPTER 5 Trigonometric Ratios**

#### MIND TEST 5.1a

| Angle        | Hypotenuse | Opposite side | Adjacent side |
|--------------|------------|---------------|---------------|
| $\angle QPR$ | PR         | QR            | PQ            |
| $\angle PRQ$ | PR         | PQ            | QR            |
| $\angle MNK$ | KN         | KM            | MN            |
| $\angle MKN$ | KN         | MN            | KM            |
| $\angle FEG$ | EG         | FG            | EF            |
| $\angle EGF$ | EG         | EF            | FG            |
| $\angle BAE$ | AE         | BE            | AB            |
| $\angle AEB$ | AE         | AB            | BE            |
| $\angle BCD$ | CD         | BD            | BC            |
| $\angle BDC$ | CD         | BC            | BD            |

#### MIND TEST 5.1b

| $\Delta DEF$                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sin x = \frac{EF}{DF}$         | $\cos x = \frac{DE}{DF}$                                                                                                                                                                     | $\tan x = \frac{EF}{DE}$                                                                                                                                                                                                                                                                                                                                                         |
| $\sin y = \frac{DE}{DF}$         | $\cos y = \frac{EF}{DF}$                                                                                                                                                                     | $\tan y = \frac{DE}{EF}$                                                                                                                                                                                                                                                                                                                                                         |
| $\Delta KLM$                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |
| $\sin x = \frac{KL}{KM}$         | $\cos x = \frac{LM}{KM}$                                                                                                                                                                     | $\tan x = \frac{KL}{LM}$                                                                                                                                                                                                                                                                                                                                                         |
| $\sin y = \frac{LM}{KM}$         | $\cos y = \frac{KL}{KM}$                                                                                                                                                                     | $\tan y = \frac{LM}{KL}$                                                                                                                                                                                                                                                                                                                                                         |
| $\Delta PQR$                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                  |
| $\sin x = \frac{QS}{PQ}$         | $\cos x = \frac{PS}{PQ}$                                                                                                                                                                     | $\tan x = \frac{QS}{PS}$                                                                                                                                                                                                                                                                                                                                                         |
| $\sin y = \frac{Q\tilde{S}}{QR}$ | $\cos y = \frac{R\tilde{S}}{QR}$                                                                                                                                                             | $\tan y = \frac{QS}{RS}$                                                                                                                                                                                                                                                                                                                                                         |
|                                  | $\Delta DEF$ $\sin x = \frac{EF}{DF}$ $\sin y = \frac{DE}{DF}$ $\Delta KLM$ $\sin x = \frac{KL}{KM}$ $\sin y = \frac{LM}{KM}$ $\Delta PQR$ $\sin x = \frac{QS}{PQ}$ $\sin y = \frac{QS}{QR}$ | $\Delta DEF$ $\sin x = \frac{EF}{DF} \qquad \cos x = \frac{DE}{DF}$ $\sin y = \frac{DE}{DF} \qquad \cos y = \frac{EF}{DF}$ $\Delta KLM$ $\sin x = \frac{KL}{KM} \qquad \cos x = \frac{LM}{KM}$ $\sin y = \frac{LM}{KM} \qquad \cos y = \frac{KL}{KM}$ $\Delta PQR$ $\sin x = \frac{QS}{PQ} \qquad \cos x = \frac{PS}{PQ}$ $\sin y = \frac{QS}{QR} \qquad \cos y = \frac{RS}{QR}$ |

#### MIND TEST 5.1c

1. Trigonometric ratios of angle x and angle y are the same. This is because all side lengths are reduced by the same rate.

| 2. | (a) | (i) $\frac{38}{145}$ | (ii) $\frac{28}{29}$ | (iii) $\frac{19}{70}$ |
|----|-----|----------------------|----------------------|-----------------------|
|    |     | (iv) $\frac{1}{2}$   | (v) $\frac{7}{8}$    | (vi) $\frac{4}{7}$    |
|    | (b) | No                   |                      |                       |

| M  | IND 1 | EST 5.1d                     |                               |                               |
|----|-------|------------------------------|-------------------------------|-------------------------------|
| ۱. | (a)   | $\sin\theta = \frac{15}{39}$ | $\cos \theta = \frac{12}{13}$ | $\tan \theta = \frac{15}{36}$ |
|    | (b)   | $\sin\theta = \frac{24}{25}$ | $\cos \theta = \frac{7}{25}$  | $\tan \theta = \frac{24}{7}$  |
|    | (c)   | $\sin\theta = \frac{15}{17}$ | $\cos \theta = \frac{8}{17}$  | $\tan \theta = \frac{15}{8}$  |
|    | (d)   | $\sin\theta = \frac{5}{13}$  | $\cos\theta = \frac{12}{13}$  | $\tan \theta = \frac{5}{12}$  |
|    | (e)   | $\sin\theta = \frac{15}{17}$ | $\cos \theta = \frac{8}{17}$  | $\tan \theta = \frac{15}{8}$  |
|    | (f)   | $\sin \theta = 0.6$          | $\cos \theta = 0.8$           | $\tan \theta = 0.75$          |

