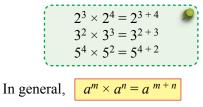
CHAPTER 1

Brainstorming 1 🐣 📑

Aim: To identify the relationship between multiplication of numbers in index form with the same base and repeated multiplication.

Steps:


- 1. Study example (a) and complete examples (b) and (c).
- 2. Discuss with your friend and state three other examples.
- 3. Exhibit three examples in the mathematics corner for other groups to give feedback.

Multiplication of numbers in index form	Repeated multiplication		
(a) $2^3 \times 2^4$	$3 \text{ factors} \qquad 4 \text{ factors} \qquad 7 \text{ factors (overall)} $ $(2 \times 2 \times 2) \times (2 \times 2 \times 2 \times 2) = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 = 2^{7}$ $2^{3} \times 2^{4} = 2^{7}$ $2^{3} \times 2^{4} = 2^{3+4}$		
(b) $3^2 \times 3^3$	$2 \text{ factors} 3 \text{ factors} 5 \text{ factors (overall)} = 3 \times 3 \times 3 \times 3 = 3^{5}$ $3^{2} \times 3^{3} = 3^{-3}$ $3^{2} \times 3^{3} = 3^{-3}$		
(c) $5^4 \times 5^2$	$4 \text{ factors} (5 \times 5 \times 5) \times (5 \times 5) = 5 \times 5 \times 5 \times 5 \times 5 \times 5 = 5^{6}$ $5^{4} \times 5^{2} = 5^{6}$ $5^{4} \times 5^{2} = 5^{6}$		

Discussion:

What is your conclusion regarding the relationship between multiplication of numbers in index form and repeated multiplication?

From Brainstorming 1, it is found that:

Brainstorming 2 🐣 🕌

Aim: To identify the relationship between division of numbers in index form with the same base and repeated multiplication.

Steps:

- 1. Study example (a) and complete examples (b) and (c).
- 2. Discuss with your friend and state three other examples.
- **3.** Present your findings.

Division of numbers in index form	Repeated multiplication		
(a) 4 ⁵ ÷ 4 ²	$\frac{4^{5}}{4^{2}} = \underbrace{\frac{5 \text{ factors}}{4 \times 4 \times 4 \times 4 \times 4}}_{2 \text{ factors}} = \underbrace{4 \times 4 \times 4}_{3 \text{ factors (Remainder)}}$ $4^{5} \div 4^{2} = 4\underbrace{3}_{-3=5-2}$ $4^{5} \div 4^{2} = 4\underbrace{5-2}_{-2}$		
(b) 2 ⁶ ÷ 2 ²	$\frac{2^{6}}{2^{2}} = \frac{\underbrace{2 \times 2 \times 2 \times 2 \times 2}_{2 \times 2}}_{2 \times 2} = \underbrace{2 \times 2 \times 2 \times 2}_{4 \text{ factors (Remainder)}} = \underbrace{2^{6} \div 2^{2}}_{2 \text{ factors}} = \underbrace{2 \times 2 \times 2 \times 2}_{4 \text{ factors (Remainder)}} = \underbrace{2^{6} \div 2^{2}}_{2 \times 2} = 2 \Box$		
(c) $(-3)^5 \div (-3)^3$	$\frac{(-3)^5}{(-3)^3} = \underbrace{\overbrace{(-3)^5 (-3) \times (-3) \times (-3)}^{5 \text{ factors}} = (-3) \times (-3) = (-3)^2}_{3 \text{ factors}} = \underbrace{(-3) \times (-3) = (-3)^2}_{2 \text{ factors (Remainder)}}$ $(-3)^5 \div (-3)^3 = (-3)^{\Box}$		

Discussion:

What is the relationship between division of numbers in index form and repeated multiplication?

From Brainstorming 2, it is found that:

$$\begin{cases}
4^{5} \div 4^{2} = 4^{5-2} \\
2^{6} \div 2^{2} = 2^{6-2} \\
(-3)^{5} \div (-3)^{3} = (-3)^{5-3}
\end{cases}$$
In general,
$$a^{m} \div a^{n} = a^{m-n}$$

Brainstorming 3 🐣 🕌

Aim: To identify the relationship between a number in index form raised to a power and repeated multiplication.

Steps:

- 1. Study example (a) and complete examples (b) and (c).
- 2. Discuss with your friend and state three other examples.
- **3.** Present your finding.

Index form raised to a power	Repeated multiplication in index form	Conclusion
(a) (3 ²) ⁴	4 factors $3^2 \times 3^2 \times 3^2 \times 3^2$ $= 3^{2+2+2+2}_{4 \text{ times}}$ $= 3^{2(4)}$ 2 is added 4 times	$(3^2)^4 = 3^{2(4)}$ = 3 ⁸
(b) (5 ⁴) ³	3 factors $5^4 \times 5^4 \times 5^4$ $= 5^{4+4+4}_{3 \text{ times}} - 4 \text{ is added 3 times}$ $= 5^{4(3)} \blacktriangleleft$	$(5^4)^3 = 5$ $= 5$
(c) (4 ³) ⁶	6 factors $4^3 \times 4^3 \times 4^3 \times 4^3 \times 4^3 \times 4^3$ $= 4^{3+3+3+3+3}_{6 \text{ times}}$ $= 4^{3(6)}$	$(4^3)^6 = 4^{\boxed{}} = 4^{\boxed{}}$

Discussion:

What is your conclusion regarding the index form raised to a power and repeated multiplication in index form?

The conclusion in Brainstorming 3 can be checked using the following method.

Example (a) Example (b) Example (c) $(3^2)^4 = 3^2 \times 3^2 \times 3^2 \times 3^2$ $(5^4)^3 = 5^4 \times 5^4 \times 5^4$ $(4^3)^6 = 4^3 \times 4^3 \times 4^3 \times 4^3 \times 4^3 \times 4^3$ $=3^{2+2+2+2}$ $= 5^{4+4+4}$ $= 4^{3+3+3+3+3+3+3}$ = 3⁸ $=5^{12}$ $=4^{18}$ $3^{2(4)} = 3^{2 \times 4}$ $5^{4(3)} = 5^{4 \times 3}$ $4^{3(6)} = 4^{3 \times 6}$ $= 3^{8}$ $= 5^{12}$ $=4^{18}$

From Brainstorming 3, it is found that:

Brainstorming 4 🔗 👬

Aim: To determine the value of a number or an algebraic term with a zero index.

Steps:

- 1. Study and complete the following table.
- 2. What is your conclusion regarding zero index?

Division in		Conclusion	
index form	Law of indices	Repeated multiplication	from the solution
(a) $2^3 \div 2^3$	$2^{3-3} = 2^0$	$\frac{\underline{\mathcal{Y}}\times\underline{\mathcal{Y}}\times\underline{\mathcal{Y}}}{\underline{\mathcal{Y}}\times\underline{\mathcal{Y}}\times\underline{\mathcal{Y}}}=1$	$2^0 = 1$
(d) $m^5 \div m^5$	$m^{5-5} = m^0$	$\frac{\cancel{m}\times\cancel{m}\times\cancel{m}\times\cancel{m}\times\cancel{m}\times\cancel{m}}{\cancel{m}\times\cancel{m}\times$	$m^0 = 1$
(c) $5^4 \div 5^4$			
(d) $(-7)^2 \div (-7)^2$			
(e) $n^6 \div n^6$			

Discussion:

- 1. Are your answers similar to the answers of the other groups?
- 2. What is your conclusion regarding zero index?

From Brainstorming 4, it is found that:

$$2^0 = 1$$
$$m^0 = 1$$

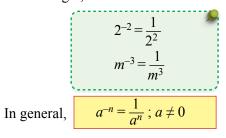
Therefore, a number or an algebraic term with a zero index will give a value of 1.

In general, $a^0 = 1$; $a \neq 0$

Brainstorming 5 🔥 In groups

Aim: To verify
$$a^{-n} = \frac{1}{a^n}$$
.

Steps:


1. Study and complete the following table.

Division in			Conclusion	
index form	Law of indices	Repeated multiplication	from the solution	
(8	a) $2^3 \div 2^5$	$2^{3-5} = 2^{-2}$	$\frac{\cancel{2}\times\cancel{2}\times\cancel{2}}{2\times2\times\cancel{2}\times\cancel{2}\times\cancel{2}} = \frac{1}{2\times2} = \frac{1}{2^2}$	$2^{-2} = \frac{1}{2^{2}}$
(t	b) $m^2 \div m^5$	$m^{2-5} = m^{-3}$	$\frac{\cancel{m}\times\cancel{m}}{\cancel{m}\times\cancel{m}\times\cancel{m}\times\cancel{m}} = \frac{1}{\cancel{m}\times\cancel{m}\times\cancel{m}} = \frac{1}{m^3}$	$m^{\underline{-3}} = \frac{1}{m^{\underline{3}}}$
(0	c) $3^2 \div 3^6$			
(0	d) $(-4)^3 \div (-4)^7$			
(e	$p^4 \div p^8$			

Discussion:

- 1. Are your answers similar to the anwers of the other groups?
- 2. What is your conclusion?

From Brainstorming 5, it is found that:

