# **CHAPTER 7**



**Aim:** To determine the orthogonal projections of an object. **Materials:** Dynamic software, drawing paper.

### Steps:

- **1.** Open *View* **and select 3D** *graphics.*
- 2. Select the shape of pyramid
- **3.** Basic display is formed (Diagram 1).
- 4. Drag the cursor to display and select the four points:
  - (a) Point (-2, 0) on the red line.
  - (b) Point (-2, 0) on the green line.
  - (c) Point (2, 0) on the red line.
  - (d) Point (2, 0) on the green line and connect it to the starting point (-2, 0) at the red line (Diagram 2).
- 5. The display will show a brownish shape (Diagram 3).
- **6.** Drag the cursor up to the blue line (0, 4) (Diagram 4).
- 7. Select the 3D rotate icon, select view in front of
- **8.** Place the arrow at the top end of the blue line to see the orthogonal projection on the horizontal plane (Diagram 5).



- **9.** Repeat step 8 on the red line and the green line to see various orthogonal projections on vertical planes.
- 10. Draw the resulting orthogonal projections as in steps 8 and 9 in the given table.
- **11.** Select a new file. Build other 3D shapes and draw orthogonal projections from different perspectives.





| Results of Findings                                         |                       |  |  |  |  |  |
|-------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Pyramid 🙏                                                   | Orthogonal projection |  |  |  |  |  |
| The view on the horizontal plane as seen from the blue line |                       |  |  |  |  |  |
| The view on the vertical plane as seen from the red line    |                       |  |  |  |  |  |
| The view on the vertical plane as seen from the green line  |                       |  |  |  |  |  |

## **Discussion:**

Discuss the resulting shape of the orthogonal projection as compared to the actual shape of the object.

From Brainstorming 1, it is found that:

| Pyramid 🙏                                                   | Orthogonal projection |
|-------------------------------------------------------------|-----------------------|
| The view on the horizontal plane as seen from the blue line | <b></b>               |
| The view on the vertical plane as seen from the red line    |                       |
| The view on the vertical plane as seen from the green line  |                       |



## Brainstorming 2 🔗 In groups

Aim: Compare and contrast an object with an orthogonal projection in terms of length of side and size of angle.

Materials: Cardboard, a pencil, a pair of scissors, adhesive tape and drawing paper.

Steps:

- 1. Draw the following shape according to the size given on a cardboard (Diagram 1).
- 2. Cut out the shape in Diagram 1 and use adhesive tape to build the shape in Diagram 2.



- **3.** Draw an orthogonal projection for the shape that you built on a horizontal plane as viewed from direction *Z* and on a vertical plane as viewed from direction *Y*.
- 4. Produce the orthogonal projections on the horizontal plane and the vertical plane as follows:





5. Measure each of the length of sides and angles of the two orthogonal projections you drawn. Complete the table below.

| Side | Object  | Projection<br>from direction<br>Z | Angle        | Object | Projection<br>from direction<br>Z |
|------|---------|-----------------------------------|--------------|--------|-----------------------------------|
| AC   | 14 cm   | 14 cm                             | $\angle VCB$ | 60°    | 45°                               |
| AB   |         |                                   | ∠VBC         |        |                                   |
| BC   | 19.8 cm | 19.8 cm                           | ∠BAC         | 90°    | 90°                               |
| VC   | 19.8 cm | 14 cm                             | $\angle CAB$ |        |                                   |
| VB   |         |                                   |              |        |                                   |

| Side | Object  | Projection<br>from direction<br>Y | Angle        | Object | Projection<br>from direction<br>Y |
|------|---------|-----------------------------------|--------------|--------|-----------------------------------|
| AV   | 14 cm   | 14 cm                             | $\angle VCB$ | 60°    | 90°                               |
| AB   |         |                                   | $\angle VBC$ | 60°    | 45°                               |
| BC   | 19.8 cm | 14 cm                             | $\angle CVB$ |        |                                   |
| VC   |         |                                   | ∠AVB         | 45°    | 45°                               |
| VB   | 19.8 cm | 19.8 cm                           |              |        |                                   |

#### **Discussion:**

Are all sides and angles of the orthogonal projection of the same size as those of the object? Discuss.

From Brainstorming 2, it is found that:

- (a) For orthogonal projections on a horizontal plane from direction Z, the lengths of AC, AB and BC, and the size of  $\angle BAC$ ,  $\angle ACB$  and  $\angle ABC$  remain unchanged.
- (b) For orthogonal projections on a vertical plane from direction *Y*, the lengths of *AV*, *AB* and *VB*, and the size of  $\angle AVB$  and  $\angle ABV$  remain unchanged.

In general,

The **length of sides** and **size of angles** of the **orthogonal projections** of an object can remain unchanged or vary according to the **viewing direction**.

