CHAPTER 9

Brainstorming 1 🦀

Aim: To determine the relationship between equation y = mx + c with gradient and y-intercept.

Materials: Graph paper, linear function cards

Steps:

- 1. Get into four groups.
- 2. Each group is given a card written with two linear functions.

Group 1

y = 3x + 6

y = -2x - 4

Group 2

$$y = 2x + 6$$
$$y = -4x + 8$$

Group 3

$$y = 5x - 10$$
$$y = -3x + 9$$

Group 4

$$y = 4x - 8$$
$$y = -2x + 2$$

3. Complete the table of values below for each given function.

х	-3	-2	-1	0	1	2	3
у							

- **4.** Based on the table of values draw the graphs of the functions.
- 5. From the graph of the function, calculate the gradient and state the y-intercept.
- **6.** Compare the values of gradient and y-intercept from the graph with the values in the function card.

Discussion:

- 1. Compare your findings in step 6 with linear function y = mx + c. What is your conclusion?
- 2. Present your findings. Are your findings the same as the other groups' findings?

From Brainstorming 1, it is found that:

- (a) For a linear function, y = mx + c, m is the gradient and c is the y-intercept of the straight line.
- (b) The graph of linear function, y = mx + c is a straight line.

In general,

Aim: To produce a graph of linear function.

Materials: Dynamic software

Steps:

1. Start with New sketch.

Select graph icon.

Select *plot new function* and enter the required equation of straight line (Diagram 1).

Diagram 1

- Click straightedge tool and mark two points on the constructed graph of straight line.
- Click *measure* and then click *slope* (Diagram 2). The gradient value will be displayed (Diagram 3).

Diagram 2

Diagram 3

6. Repeat steps 2 to 5 to draw and determine the gradient of the graph of straight line for function y = -2x + 8. (Diagram 4)

The second graph of straight line: y = -2x + 8

Diagram 4

7. Straight lines that are parallel to the x-axis and y-axis.

A displayed example of straight lines such as

(a)
$$y = 4$$

(b)
$$x = 6$$

Discussion:

- 1. Compare the forms of graph resulting from dynamic software with the forms of graph from Brainstorming 1.
- 2. Make a conclusion for the values of m and c of the equation of straight line in the form y = mx + c. Discuss the shape of the graph when
 - (a) *m* is positive.
- (b) *m* is negative.
- (c) parallel to x-axis.
- (d) parallel to y-axis.

From Brainstorming 2, it is found that:

- (a) The graph of linear function y = mx + c is a straight line.
- (b) The graph of function y = h is a straight line parallel to x-axis.
- (c) The graph of function x = h is a straight line parallel to y-axis.

Brainstorming 3 🙌 In groups

Aim: To determine the relationship between the equations of straight

lines in the form of
$$ax + by = c$$
, $\frac{x}{a} + \frac{y}{b} = 1$ and $y = mx + c$.

Materials: Graph paper, straight line equation cards

Steps:

- 1. Get into four groups.
- Each group is given a card with three equations of a straight line written on it.

$$2x + 3y = 6$$

$$\frac{x}{3} + \frac{y}{2} = 1$$

$$y = -\frac{2}{3}x + 2$$

$$4x - 2y = -8$$

$$\frac{x}{(-2)} + \frac{y}{4} = 1$$

$$y = 2x + 4$$

Group 3

$$4x - 2y = -8$$

$$\frac{x}{(-2)} + \frac{y}{4} = 1$$

$$y = 2x + 4$$

$$-3x + 4y = -12$$

$$\frac{x}{4} + \frac{y}{(-3)} = 1$$

$$y = \frac{3}{4}x - 3$$

Group 4

$$-x - 4y = 4$$

$$\frac{x}{(-4)} + \frac{y}{(-1)} = 1$$

$$y = -\frac{1}{4}x - 1$$

3. Determine the corresponding value of y when x = 0 and the corresponding value of x when y = 0 for each equation.

Example:							
x	0	3					
У	2	0					

2x + 3y = 6

When
$$x = 0$$
: When $y = 0$:
 $2(0) + 3y = 6$ $2x + 3(0) = 6$
 $3y = 6$ $2x = 6$

When v = 0:

$$x + 3(0) = 6$$
$$2x = 6$$

$$= 2 x = 3$$

- 4. Draw a straight line graph for each equation.
- 5. From the graph, state the x-intercept and y-intercept and determine the gradient of the graph.

Discussion:

- 1. What is your conclusion about the relationship between the x-intercept with the y- intercept and the gradients of the three straight line graphs?
- What is your conclusion about the relationship between the equations of straight line in different forms?

From Brainstorming 3, it is found that:

- (a) The values of x-intercept and y-intercept and the gradient for these three straight lines are the
- (b) Equations of straight line in the forms of ax + by = c, $\frac{x}{a} + \frac{y}{b} = 1$ and y = mx + c produce the same straight line graph if the values of *x*-intercept and *y*-intercept are the same.

In general,

Straight line equation can also be written in the form of ax + by = c and $\frac{x}{a} + \frac{y}{b} = 1$, $a \ne 0$ and $b \neq 0$

Aim: To determine the relationship between gradients of straight lines with parallel lines.

Steps:

1. Examine the straight lines below that were drawn based on the equation of a straight line with the same gradient of m = 2.

2. Based on Diagram 1 to Diagram 5, calculate the value θ .

Diagram 1 Diagram 2 Diagram 3 Diagram 4 Diagram 5 $\tan \theta = \frac{2}{1}$ $\theta = 63.43^{\circ}$

3. Are the values of θ for the five diagrams the same?

4. The graphs in Diagram 1 to Diagram 5 are combined as below.

Discussion:

- 1. What is the connection between the values of θ with the five straight lines above?
- 2. Are the straight lines y = 2x + 4, y = 2x + 2, y = 2x, y = 2x 2 and y = 2x 4 parallel? Why?
- 3. What are the connections between the gradients and the parallel lines?
- **4.** Are your findings the same as those of the other groups?

From Brainstorming 4, it is found that:

The straight lines y = 2x + 4, y = 2x + 2, y = 2x, y = 2x - 2 and y = 2x - 4 are parallel because they have the same gradient, that is m = 2 and the same corresponding angle, that is 63.43°.

In general,

Straight lines that have the same gradients are parallel.

Aim: To determine the coordinates of the intersection of two straight lines.

Materials: Dynamic software

Steps:

- 1. Start with New Sketch and click Graph next click Show Grid.
- 2. Click *Graph* again and select *Plot New Function* (Diagram 1).
- 3. Use *Plot New Function* to plot the intersection of the two straight lines.
- **4.** Example: y = x + 3 and y = -x + 5.
- **5.** Use *Arrow Tool* to select both straight line graphs. Click *Construct* and select *Intersection*.
- **6.** Click *Measure* and select *Coordinates*. The intersection point A (1.00, 4.00) will be displayed (Diagram 2).
- **7.** Repeat steps 1 to 6 for intersection of the other two straight lines.
 - (a) y = x + 2 and y = 2x + 4 (Diagram 3)
 - (b) y = 4 and y = 3x 2 (Diagram 4)

Diagram 1

Diagram 2

Diagram 4

Discussion:

What can you conclude from the results above?

From Brainstorming 5, it is found that:

- (a) the point of intersection of two straight lines can be determined by plotting both straight lines on the Cartesian plane.
- (b) two straight lines that are not parallel intersect at only one point.

