ACKNOWLEDGEMENTS

The publishing of this textbook involves cooperation from various parties. Our wholehearted appreciation and gratitude goes out to all involving parties:

- Committee members of *Penambahbaikan Pruf Muka Surat*, Textbook Division, Ministry of Education, Malaysia.

- Committee members of *Penyemakan Pembetulan Pruf Muka Surat*, Textbook Division, Ministry of Education, Malaysia.

- Committee members of *Penyemakan Naskah Sedia Kamera*, Textbook Division, Ministry of Education, Malaysia.

- Officers in Textbook Division and the Curriculum Development Division, Ministry of Education, Malaysia.

- Chairperson and members of the Quality Control Panel.

- Editorial Team and Production Team, especially the illustrators and designers.

- Everyone who has been directly or indirectly involved in the successful publication of this book.
Contents

Introduction \hspace{1cm} v

Symbols and Formulae \hspace{1cm} vii

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Indices</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Index Notation</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Law of Indices</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 2</th>
<th>Standard Form</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Significant Figures</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Standard Form</td>
<td>37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>Consumer Mathematics: Savings and Investments, Credit and Debt</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Savings and Investments</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Credit and Debt Management</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>Scale Drawings</th>
<th>86</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Scale Drawings</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>Trigonometric Ratios</th>
<th>106</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Sine, Cosine and Tangent of Acute Angles in Right-angled Triangles</td>
<td>108</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6</td>
<td>Angles and Tangents of Circles</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>6.1 Angle at the Circumference and Central</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Angle Subtended by an Arc</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.2 Cyclic Quadrilaterals</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>6.3 Tangents to Circles</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>6.4 Angles and Tangents of Circles</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>Plans and Elevations</td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>7.1 Orthogonal Projections</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>7.2 Plans and Elevations</td>
<td>182</td>
</tr>
<tr>
<td>8</td>
<td>Loci in Two Dimensions</td>
<td>198</td>
</tr>
<tr>
<td></td>
<td>8.1 Loci</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>8.2 Loci in Two Dimensions</td>
<td>204</td>
</tr>
<tr>
<td>9</td>
<td>Straight Lines</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>9.1 Straight Lines</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Answers</td>
<td>252</td>
</tr>
<tr>
<td></td>
<td>Glossary</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>264</td>
</tr>
</tbody>
</table>
Introduction

This Form 3 Mathematics Textbook is prepared based on Kurikulum Standard Sekolah Menengah (KSSM). This book contains 9 chapters arranged systematically based on Form 3 Mathematics Dokumen Standard Kurikulum dan Pentaksiran (DSKP).

At the beginning of each chapter, students are introduced to stimulating materials related to daily life to stimulate their thinking about the topic. In addition, Learning Standard and word list also give a visual summary about the chapter’s content.

This book contains the following special features:

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>What will you learn?</td>
</tr>
<tr>
<td>Why do you learn this chapter?</td>
</tr>
<tr>
<td>Exploring Era</td>
</tr>
<tr>
<td>WORD BANK</td>
</tr>
<tr>
<td>Brainstorming</td>
</tr>
<tr>
<td>BULLETIN</td>
</tr>
<tr>
<td>QUIZ</td>
</tr>
<tr>
<td>REMINDER</td>
</tr>
<tr>
<td>TIPS</td>
</tr>
<tr>
<td>SMART MIND</td>
</tr>
</tbody>
</table>

- **What will you learn?** Contains learning standard that students will learn in each chapter.
- **Why do you learn this chapter?** Applications of knowledge in this chapter in related career fields.
- **Exploring Era** History of ancient academy or original exploration of the chapter in Mathematics.
- **WORD BANK** Word list contained in each chapter.
- **Brainstorming** Helps students to understand the basic mathematical concept via individual, pair or group activities.
- **BULLETIN** Gives additional information about the chapter learned.
- **QUIZ** Questions that test students’ capability to understand certain technique in each chapter.
- **REMINDER** Grabs students’ attention to additional facts that need to be reminded of, mistakes that students commonly make, and carelessness to be avoided.
- **TIPS** Exposes students to additional knowledge that they need to know.
- **SMART MIND** Presents mind-stimulating questions for enhancement of students’ critical and creative thinking.
<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMART TECHNOLOGY</td>
</tr>
<tr>
<td>DISCUSSION CORNER</td>
</tr>
<tr>
<td>FLASHBACK</td>
</tr>
<tr>
<td>SMART FINGER</td>
</tr>
<tr>
<td>PROJECT</td>
</tr>
<tr>
<td>MIND TEST</td>
</tr>
<tr>
<td>INDICATOR</td>
</tr>
<tr>
<td>Dynamic Challenge</td>
</tr>
<tr>
<td>QR Code</td>
</tr>
<tr>
<td>EXPLORING MATHEMATICS</td>
</tr>
<tr>
<td>CONCEPT MAP</td>
</tr>
<tr>
<td>SELF-REFLECT</td>
</tr>
<tr>
<td>CHECKING ANSWERS</td>
</tr>
<tr>
<td>STEM</td>
</tr>
</tbody>
</table>
Symbols and Formulae

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{})</td>
<td>root</td>
</tr>
<tr>
<td>(\pi)</td>
<td>pi</td>
</tr>
<tr>
<td>(a : b)</td>
<td>ratio of (a) to (b)</td>
</tr>
<tr>
<td>(A \times 10^n)</td>
<td>standard form where (1 \leq A < 10) and (n) is an integer</td>
</tr>
<tr>
<td>(=)</td>
<td>is equal to</td>
</tr>
<tr>
<td>(\approx)</td>
<td>is approximately equal to</td>
</tr>
<tr>
<td>(\neq)</td>
<td>is not equal to</td>
</tr>
<tr>
<td>(>)</td>
<td>is more than</td>
</tr>
<tr>
<td>(\geq)</td>
<td>is more than or equal to</td>
</tr>
<tr>
<td>(<)</td>
<td>is less than</td>
</tr>
<tr>
<td>(\leq)</td>
<td>is less than or equal to</td>
</tr>
<tr>
<td>(\triangle)</td>
<td>triangle</td>
</tr>
<tr>
<td>(\angle)</td>
<td>angle</td>
</tr>
<tr>
<td>(°)</td>
<td>degree</td>
</tr>
<tr>
<td>(')</td>
<td>minute</td>
</tr>
<tr>
<td>(")</td>
<td>second</td>
</tr>
</tbody>
</table>

FORMULAE

\[a^m \times a^n = a^{m+n}\]
\[a^m \div a^n = a^{m-n}\]
\[(a^m)^n = a^{mn}\]
\[a^0 = 1\]
\[a^{-n} = \frac{1}{a^n}\]
\[a^{\frac{1}{n}} = \sqrt[n]{a}\]
\[a^{\frac{m}{n}} = (a^m)^{\frac{1}{n}} = (a^{\frac{1}{n}})^m\]
\[\tan \theta = \frac{\sin \theta}{\cos \theta}\]

Pythagorean theorem:
\[c^2 = a^2 + b^2\]
\[b^2 = c^2 - a^2\]
\[a^2 = c^2 - b^2\]

Distance between two points:
\[= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\]

Midpoint:
\[= \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)\]

Gradient, \(m\):
\[= \frac{\text{vertical distance}}{\text{horizontal distance}}\]
\[= \frac{y_2 - y_1}{x_2 - x_1}\]
\[= -\frac{y\text{-intercept}}{x\text{-intercept}}\]

Download the free QR Code scanner to your mobile devices. Scan QR Code or visit the website http://bukutekskssm.my/Mathematics/F3/Index.html to download files for brainstorming. Then, save the downloaded file for offline use.

Note: Students can download free GeoGebra and Geometer’s Sketchpad (GSP) software to open related files.
Distance in outer space, such as the distance between two stars in the galaxy, is measured in light years. One light year is the distance travelled by light in one year. One light year is equal to 9,500,000,000,000 km, that is 9.5 trillion kilometres. Small units such as nanometre are used for distances closer to zero. Do you know that 1 nanometre is equal to 0.000 000 001 metre?
The ancient Greeks used a system based on myriad that is ten thousand. Ten myriads is equal to one hundred thousand.

Archimedes (287 BC – 212 BC) created a system of big numbers up to $10^8 \times 10^{16}$.

What does significant figure mean and how do you determine the number of significant figures of a number?

We use measurement in many situations in our daily life. Examples of frequently used measurements are length, distance, mass, temperature, area and speed.

The estimation of a measurement can be done using approximation. For example, the distance between the Earth and the Moon is 384 400 km. This value is an estimation calculated using certain methods and stated as an approximation.

The degree of approximation of a measurement to the actual value shows the level of accuracy of the measurement. The skill in making estimations and approximations can help you in many situations in daily life.

Aim: Determine the importance of making estimations and approximations in daily life.

Steps:
1. Read and understand the situations below.

Situation 1
Hashim is interested in a shirt sold in a supermarket with a 50% discount. The original price of the shirt is RM47.90. Hashim estimates the price of the shirt after discount and takes it to the cashier. The cashier informs him that the price of the shirt is RM28.70. Hashim argues that his estimation of the price is not more than RM25. Is Hashim’s estimation correct?

Situation 2
Mrs Tan wants to buy 30 metres of cloth costing RM5.85 per metre to make curtains. She makes an estimation of the total price of the cloth and allocates RM180. Is the money allocated by Mrs Tan sufficient?

Discussion:
1. In the two situations above, how did Hashim and Mrs Tan make estimations of the total price?
2. Discuss with your friend the importance of making estimations and approximations.
3. State two other situations that require you to make estimations and approximations.

From Brainstorming 1, it is found that;

Approximating a value to a certain significant figure allows us to make an accurate estimation.
You have understood the importance of making estimation for the purpose of obtaining a value that is near the exact value. Significant figures are used to obtain the approximate value.

The significant figures of an integer or decimal refer to the digits in the number state accurately to a certain degree of accuracy as required. The number of significant numbers is counted starting from a non-zero digit.

Brainstorming 2

Aim: Determine the effect of the position of the zero digit in integers and decimals.

Steps:

1. Study the integer cards below.

 - Card 1: 3 210
 - Card 2: 3 201
 - Card 3: 3 021
 - Card 4: 0 321

 Does the position of the zero digit have any effect on the value of digit 3?

2. Study the decimal cards below.

 - Card 5: 3.210
 - Card 6: 3.201
 - Card 7: 3.021
 - Card 8: 0.321

 Does the position of the zero digit have any effect on the value of digit 3?

3. Study the decimal cards below.

 - Card 9: 3.210
 - Card 10: 3.2100
 - Card 11: 3.21000
 - Card 12: 3.210000

 Does the position of the zero digit have any effect on the value of digit 2?

4. Discuss with your friend the effect of the position of the zero digit on the value of digit 3 in Card 1 to Card 8 and the effect of adding zero digits on the value of digit 2 in Card 9 to Card 12.

5. Present the results of your discussion. Compare your results with other pairs.

Discussion:

What is your conclusion concerning the position of the zero digit in an integer or decimal?

From Brainstorming 2, it is found that:

(a) Card 1, Card 2, Card 3, Card 5, Card 6 and Card 7
 - The position of the zero digit between or at the end of the number, maintains the place value of digit 3.

(b) Card 4 and Card 8
 - The position of the zero digit as the first digit has changed the place value of digit 3.

(c) Card 9, Card 10, Card 11 and Card 12
 - The position of the zero digit at the end of the decimal does not change the place value of digit 2.
In general,

- All non-zero digits are significant figures.
- The digit zero between non-zero digits is a significant figure.
- The digit zero at the end of an integer is a significant figure depending on the level of accuracy required.
- The digit zero at the end of a decimal is a significant figure because it determines the level of accuracy of the decimal.
- The digit zero before the first non-zero digit is not a significant figure.

How do you determine the number of significant figures?

Decimal

<table>
<thead>
<tr>
<th>Not significant figure:</th>
<th>Significant figure:</th>
</tr>
</thead>
</table>
| Used only to determine place value of digit 5. | The digit zero between or at end of decimal is a significant figure.

<table>
<thead>
<tr>
<th>Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>All non-zero digits are significant figures.</td>
</tr>
</tbody>
</table>

Significant figure depending on level of accuracy required.

Example 1

Determine the number of significant figures for the numbers below.

<table>
<thead>
<tr>
<th></th>
<th>(a) 2 763</th>
<th>(b) 5 008</th>
<th>(c) 7 409</th>
<th>(d) 15 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e) 0.7803</td>
<td>(f) 0.0809</td>
<td>(g) 12.051</td>
<td>(h) 1.2700</td>
<td></td>
</tr>
</tbody>
</table>

Solution:

(a) 2 763 [4 s.f.]
(b) 5 008 [4 s.f.]
(c) 7 409 [4 s.f.]
(d) 15 000 [2 s.f.]
(i) 15 000 [3 s.f.]
(ii) 15 000 [4 s.f.]
(iii) 15 000 [5 s.f.]
(e) 0.7803 [4 s.f.]
(f) 0.0809 [3 s.f.]
(g) 12.051 [5 s.f.]
(h) 1.2700 [5 s.f.]

The digit zero before first non-zero digit is not a significant figure.

<table>
<thead>
<tr>
<th>Significant figure</th>
<th>All zeros after non-zero digit at end of decimal are significant figures.</th>
</tr>
</thead>
<tbody>
<tr>
<td>The digit zero between or at end of decimal is a significant figure.</td>
<td>The digit zero between non-zero digit is a significant figure.</td>
</tr>
<tr>
<td>The digit zero before first non-zero digit is not a significant figure.</td>
<td></td>
</tr>
</tbody>
</table>

TIPS

- Zeros between non-zero digit are significant figures.
 For example,
 (a) 60 007
 (5 significant figures).
 (b) 50.0042
 (6 significant figures).

- For a decimal, all digits before non-zero digit are not significant figures.
 For example,
 (a) 0.007
 (1 significant figure).
 (b) 0.005020
 (4 significant figures).

- For a whole number, zero at the end of the number is not a significant figure unless stated otherwise.
 For example,
 (a) 8 750 = 8 800
 (Rounded off to 2 significant figures).
 (b) 8 750 = 9 000
 (Rounded off to 1 significant figure).

MIND TEST 2.1a

1. State the number of significant figures for the following numbers.

<table>
<thead>
<tr>
<th></th>
<th>(a) 2 600</th>
<th>(b) 30 004</th>
<th>(c) 4 000 600</th>
<th>(d) 0.5003</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e) 0.080</td>
<td>(f) 9.0070</td>
<td>(g) 0.002000</td>
<td>(h) 30.0002</td>
<td></td>
</tr>
</tbody>
</table>
How do you round off a number to certain numbers of significant figures?

Do you still remember how to round off a number to a certain place value? The same concept and method are used to round off a number to a certain number of significant figures.

Example 2

Round off each of the following numbers to 2 significant figures.
(a) 63 479
(b) 2 476
(c) 6 953

Solution:

(a) $63\,479$

4, 7 and 9 are placed before decimal point. Thus, replace 4, 7 and 9 with zero.

$63\,479 = 63\,000$ (2 s.f.)

(b) $2\,476$

7 and 6 are placed before decimal point. Thus, replace 7 and 6 with zero.

$2\,476 = 2\,500$ (2 s.f.)

(c) $6\,953$

5 and 3 are placed before decimal point. Thus, replace 5 and 3 with zero.

$6\,953 = 7\,000$ (2 s.f.)

Example 3

Round off 68.79 to
(a) 3 significant figures
(b) 1 significant figure

Solution:

(a) 68.79

9 is placed after decimal point. Thus, 9 is dropped.

$68.79 = 68.8$ (3 s.f.)
Thus, $0.008025 = 0.00803$ (3 s.f.)

(b)

Round off 0.008025 to

(a) 3 significant figures

(b) 2 significant figures

Solution:

(a)

0.008025

Digit to be rounded off.

5 = 5, thus add 1 to 2.

Digit 5 is dropped because it is placed after the decimal point.

Thus, $0.008025 = 0.0080$ (2 s.f.)

(b)

0.008025

Digit to be rounded off.

8 > 5, thus add 1 to 6.

Digit 8 is placed before decimal point. Thus, 8 is replaced with zero. 7 and 9 are dropped.

Thus, $0.008025 = 0.0080$ (2 s.f.)

Example 4

Round off 0.008025 to

(a) 3 significant figures

(b) 2 significant figures

Solution:

(a)

0.008025

Digit to be rounded off.

5 = 5, thus add 1 to 2.

Digit 5 is dropped because it is placed after the decimal point.

Thus, $0.008025 = 0.0080$ (2 s.f.)

(b)

0.008025

Digit to be rounded off.

2 < 5, thus digit 0 remains unchanged.

Digits 2 and 5 are dropped because it is placed after the decimal point.

Thus, $0.008025 = 0.0080$ (2 s.f.)

Quiz

Round off 10.09 to

1 significant figure and

2 significant figures.

MIND TEST 2.1b

1. Complete the table below by rounding off each number below to the given significant figure.

<table>
<thead>
<tr>
<th>Number</th>
<th>3 significant figures</th>
<th>2 significant figures</th>
<th>1 significant figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 47 193</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) 5 261</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) 305.72</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d) 20.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(e) 8.595</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f) 5.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g) 0.6937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(h) 0.09184</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) 0.005709</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Calculate each operation below. State the answer to the significant figures shown in the brackets.

(a) $2.57 \times 4.5 + 0.45$ [4]
(b) $8.59 \div 2.1 - 1.26$ [3]
(c) $14.23 - 2.6 \times 1.2$ [3]
(d) $15.74 \div 20.3 \div 2.5$ [2]
(e) $7.63 \times 0.5 \div 4.2 + 5.7$ [3]
(f) $10.25 \div 0.75 - 4.2 \times 0.2$ [2]
(g) $15.62 - 1.72 \times 0.2 + 6.3$ [1]
(h) $4.94 + 0.76 \div 0.26 \times 1.4$ [3]
2.2 Standard Form

How do you recognise and write numbers in standard form?

Many scientific fields such as astronomy, biology, physics and engineering frequently use numbers that are too big or too small in their research. These numbers are written in standard form to make writing easier.

Standard form is a way to write a single number in the form;

\[A \times 10^n \]

where \(1 \leq A < 10\) and \(n\) is an integer.

For example, the land area of Malaysia is 330,803,000,000 m\(^2\). This value can be written as \(3.308 \times 10^{11}\) m\(^2\) or \(3.30803 \times 10^{11}\) m\(^2\) depending on the number of significant figures required.

How do you change a single number to standard form?

When a single number is changed to standard form;

- Numbers with value more than 1 will be given positive index.
- Numbers with value less than 1 will be given negative index.

Example 5

Write the following single numbers in standard form.

(a) 28 \hspace{1cm} (b) 280 \hspace{1cm} (c) 2,805.3

Solution:

(a) \(28 = 2.8 \times 10\)
(b) \(280 = 2.80 \times 10^2\)
(c) \(2,805.3 = 2.8053 \times 10^3\)

Example 6

Write the following decimals in standard form.

(a) 0.325 \hspace{1cm} (b) 0.00325 \hspace{1cm} (c) 0.03025 \hspace{1cm} (d) 0.003005

Solution:

(a) \(0.325 = 3.25 \times 10^{-1}\) \hspace{1cm} (b) \(0.00325 = 3.25 \times 10^{-3}\)

Is \(5.1 \times 10^9\) a number in standard form? Discuss.
How do you change a number in standard form to single number?

When a number in standard form is changed to a single number;
• The number will be equal to 10 or more if the index is positive.
• The number will be less than 1 if the index is negative.

Example 7
Write \(4.17 \times 10^5\) as a single number.

Solution:
\[
4.17 \times 10^5 = 4.17 \times 100,000 = 417,000
\]

Example 8
Write \(8.063 \times 10^{-5}\) as a single number.

Solution:
\[
8.063 \times 10^{-5} = 8.063 \times \frac{1}{100,000} = 0.00008063
\]

Example 9
Determine 3,050 terabytes in bytes. State the answer in standard form.

Solution:
\[
3,050 \text{ terabytes} = 3,050 \times 10^{12} \text{ bytes} = (3.05 \times 10^3) \times 10^{12} \text{ bytes} = (3.05 \times 10^{3+12}) \text{ bytes} = 3.05 \times 10^{15} \text{ bytes}
\]

Example 10
Determine 0.0057 nanometre in metre. State your answer in standard form.

Solution:
\[
0.0057 \text{ nanometre} = 0.0057 \times 10^{-9} \text{ metre} = (5.7 \times 10^{-3}) \times 10^{-9} \text{ metre} = (5.7 \times 10^{-3+(-9)}) \text{ metre} = (5.7 \times 10^{-3-9}) \text{ metre} = 5.7 \times 10^{-12} \text{ metre}
\]
Aim: Write metric measurements in standard form.

Steps:

1. Complete the table below by writing the single numbers for metric measurements in standard form.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Single number</th>
<th>Standard form</th>
</tr>
</thead>
<tbody>
<tr>
<td>exa</td>
<td>E</td>
<td>1 000 000 000 000 000</td>
<td>1×10^{18}</td>
</tr>
<tr>
<td>peta</td>
<td>P</td>
<td>1 000 000 000 000 000</td>
<td>1×10^{15}</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>1 000 000 000 000</td>
<td>1×10^{12}</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>1 000 000 000</td>
<td>1×10^{9}</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>1 000 000</td>
<td>1×10^{6}</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>1 000</td>
<td>1×10^{3}</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>100</td>
<td>1×10^{2}</td>
</tr>
<tr>
<td>deci</td>
<td>d</td>
<td>10</td>
<td>1×10^{1}</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>0.1</td>
<td>1×10^{-1}</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>0.001</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>micro</td>
<td>µ</td>
<td>0.000 001</td>
<td>1×10^{-6}</td>
</tr>
<tr>
<td>nano</td>
<td>n</td>
<td>0.000 000 001</td>
<td>1×10^{-9}</td>
</tr>
<tr>
<td>pico</td>
<td>p</td>
<td>0.000 000 000 001</td>
<td>1×10^{-12}</td>
</tr>
<tr>
<td>femto</td>
<td>f</td>
<td>0.000 000 000 000 001</td>
<td>1×10^{-15}</td>
</tr>
<tr>
<td>atto</td>
<td>a</td>
<td>0.000 000 000 000 000 001</td>
<td>1×10^{-18}</td>
</tr>
</tbody>
</table>

Discussion:
A number with too big or too small value can be written as a single number or in standard form. Which form will you choose for an arithmetic operation? Give your reasons.

From Brainstorming 3, it is found that;

Standard form makes it easier to write very big and very small numbers in a form that is simple and easy to understand.

MIND TEST 2.2a

1. Write the following single numbers in standard form.
(a) 35 (b) 481 (c) 5 075 (d) 97.25
(e) 3 124.3 (f) 0.9 (g) 0.23 (h) 0.0375

2. Change the numbers in standard form to single numbers.
(a) 2.5×10^0 (b) 3.75×10^1 (c) 4.23×10^2
(d) 5.07×10^3 (e) 9.1×10^4 (f) 6.2×10^{-1}
(g) 7.29×10^{-2} (h) 1.034×10^{-3} (i) 8.504×10^{-4}

3. Change the following metric measurements to the units given in the brackets. State your answers in standard form.
(a) 1 050 kilometres [metre] (b) 216 gigabytes [byte]
(c) 0.75 teralitre [litre] (d) 95 micrometres [metre]
(e) 123 nanometres [metre] (f) 0.089 femtometre [metre]
How are basic arithmetic operations involving numbers in standard form performed?

Add and subtract operations

Example 11

Calculate the value of each of the following operations. State your answer in standard form.

(a) \(2.73 \times 10^3 + 5.92 \times 10^3\)

(b) \(4.27 \times 10^5 + 9.35 \times 10^5\)

(c) \(7.02 \times 10^4 + 2.17 \times 10^5\)

(d) \(9.45 \times 10^6 - 3.24 \times 10^5\)

Solution:

(a) \(2.73 \times 10^3 + 5.92 \times 10^3\)
\[=(2.73 + 5.92) \times 10^3\]
\[= 8.65 \times 10^3\]

(c) \(7.02 \times 10^4 + 2.17 \times 10^5\)
\[=(7.02 + 21.7) \times 10^4\]
\[= 28.72 \times 10^4\]
\[= 2.872 \times 10^1 \times 10^4\]
\[= 2.872 \times 10^5\]

For operations of addition and subtraction, change index with small value to index with large value as in method 2 of example (c) and example (d).
Calculate the value of each of the following operations. State the answer in standard form.

(a) \(3.58 \times 10^{-3} + 9.24 \times 10^{-3}\)
(b) \(8.21 \times 10^{-4} + 1.49 \times 10^{-5}\)
(c) \(2.3 \times 10^{-5} - 4.6 \times 10^{-6}\)

Solution:

(a) \(3.58 \times 10^{-3} + 9.24 \times 10^{-3} = (3.58 + 9.24) \times 10^{-3}\)
\(= 12.82 \times 10^{-3}\)
\(= 1.282 \times 10^1 \times 10^{-3}\)
\(= 1.282 \times 10^{1+(-3)}\)
\(= 1.282 \times 10^{-2}\)

(b) \(8.21 \times 10^{-4} + 1.49 \times 10^{-5}\)
\(= 8.21 \times 10^{-4} + 0.149 \times 10^{-4}\)
\(= 8.359 \times 10^{-4}\)

(c) \(2.3 \times 10^{-5} - 4.6 \times 10^{-6}\)
\(= (23 - 4.6) \times 10^{-6}\)
\(= 18.4 \times 10^{-6}\)
\(= 1.84 \times 10^{1+(-6)}\)
\(= 1.84 \times 10^{-5}\)

SMART TECHNOLOGY

1. Press the **Mode** button a few times until the screen shows **Fix Sci Norm**.
2. Press **2** to choose **Sci**, that is standard form.
3. Enter number of significant figures (s.f.) needed, for example 9.
4. Enter the required operation.
 - \(3.2 \times 10^5 - 4.2 \times 10^4\) Press 3.2 **Exp** 5 - 4.2 **Exp** 4.
 - \(4 \times 10^5 \times 3.7 \times 10^4\) Press 4 **Exp** 5 \times 3.7 **Exp** 4.
5. Extend your exploration to other operations involving other standard forms.
6. Compare the results produced by calculator and answers obtained through manual calculations.
Operations of Multiplication and Division

Example 13
Solve the following operations. State your answers in standard form.
(a) \(3 \times 10^5 \times 4.9 \times 10^2\)
(b) \(7.5 \times 10^{-3} \times 5 \times 10^{-6}\)
(c) \(\frac{5.9 \times 10^5}{2 \times 10^2}\)
(d) \(\frac{6.8 \times 10^{-3}}{4 \times 10^{-6}}\)

Solution:
(a) \(3 \times 10^5 \times 4.9 \times 10^2\)
\[= (3 \times 4.9) \times 10^{5+2}\]
\[= 14.7 \times 10^7\]
\[= 1.47 \times 10^8\]
(b) \(7.5 \times 10^{-3} \times 5 \times 10^{-6}\)
\[= (7.5 \times 5) \times 10^{-3-6}\]
\[= 37.5 \times 10^{-9}\]
\[= 3.75 \times 10^{-8}\]
(c) \(\frac{5.9 \times 10^5}{2 \times 10^2}\)
\[= \frac{5.9}{2} \times 10^{5-2}\]
\[= 2.95 \times 10^3\]
(d) \(\frac{6.8 \times 10^{-3}}{4 \times 10^{-6}}\)
\[= \frac{6.8}{4} \times 10^{-3-(-6)}\]
\[= 1.7 \times 10^3\]

MIND TEST 2.2c
1. Calculate the value of each of the following operations. State your answer in standard form.
(a) \(4 \times 10^5 \times 3.7 \times 10^2\)
(b) \(7.5 \times 10^{-3} \times 5 \times 10^{-6}\)
(c) \(6.3 \times 10^5 \times 4.0 \times 10^2\)
(d) \(5.3 \times 10^{-3} \times 4 \times 10^5\)
(e) \((1.08 \times 10^2) \div (2.4 \times 10^4)\)
(f) \((9.6 \times 10^{-2}) \div (1.5 \times 10^{-5})\)
(g) \((5.9 \times 10^5) \div (2 \times 10^2)\)
(h) \((2.58 \times 10^9) \div (0.3 \times 10^{-4})\)

2. A mobile swimming pool measures 305 cm \(\times\) 183 cm \(\times\) 56 cm. Calculate the maximum volume of water that it can hold in litres. State your answer in standard form and correct to four significant figures.

3. Syazwani wants to transfer 2 terabytes of data to pen drives with a capacity of 32 gigabytes. What is the minimum number of 32-gigabyte pen drives needed?

4. Given 1 millimetre = \(10^{-3}\) metre and 1 micrometre = \(10^{-6}\) metre. State 1 millimetre in micrometre.

TIPS

Law of Indices
♦ Operation of multiplication
\((A \times 10^m) \times (B \times 10^n) = (A \times B) \times 10^{m+n}\)
♦ Operation of division
\((A \times 10^m) \div (B \times 10^n) = (A \div B) \times 10^{m-n}\)

MIND TEST
2.2c
BULLETIN

1 litre = 1 000 cm^3
1 litre = 0.001 m^3

DISCUSSION CORNER
How do you solve problems involving numbers in standard form?

Example 14

A ream of paper contains 800 sheets of paper. The thickness of one sheet of paper is \(9.4 \times 10^{-3}\) cm. Given the total thickness of \(n\) reams of paper is 225.6 cm Calculate the value of \(n\).

Solution:

Understanding the problem
Number of sheets in 1 ream = 800
Thickness of 1 sheet = \(9.4 \times 10^{-3}\) cm
Thickness of \(n\) reams = 225.6 cm

Planning a strategy
• Determine the thickness of 1 ream of paper.
• \(n = \frac{\text{thickness of } n \text{ reams}}{\text{thickness of 1 ream}}\)

Implementing the strategy
Thickness of 1 ream
\[= 800 \times 9.4 \times 10^{-3}\, \text{cm} = 7.52\, \text{cm}\]
Thus,
\[n = \frac{\text{thickness of } n \text{ reams}}{\text{thickness of 1 ream}} = \frac{225.6\,\text{cm}}{7.52\,\text{cm}} = 30\]

Making a conclusion
Number of reams is 30.

Example 15

A property firm bought a piece of land in the shape of a right-angled triangle \(PQR\) as shown in the diagram.

(a) Calculate the value of \(PQ\), in metres and state your answer in standard form.

(b) If the cost of one square metre of the land is RM45, calculate the total cost of the land in RM.

Solution:

Understanding the problem
\(\triangle PQR\) is a right-angled triangle. \(QR\) is the hypotenuse.

Planning a strategy
(a) Calculate \(PQ\) using Pythagoras’ theorem.
(b) Calculate the area of land in the shape of \(\triangle PQR\). Multiply total land area by cost of 1 m\(^2\) of land.

Implementing the strategy
(a) \(PQ^2 = [(3.5 \times 10^2)^2 - (2.1 \times 10^2)^2]\) m\(^2\)
\[= [1.225 \times 10^5 - 4.41 \times 10^4]\) m\(^2\)
\[= (7.84 \times 10^4)\) m\(^2\]
\[PQ = \sqrt{(7.84 \times 10^4)}\) m\]
\[= 2.8 \times 10^2\) m\]
(b) Area of \(\triangle PQR\) = \(\frac{1}{2} \times (2.1 \times 10^2)\) m \(\times (2.8 \times 10^2)\) m
\[= 2.94 \times 10^4\) m\(^2\]
Cost of land = \(2.94 \times 10^4\) \(\times\) RM45 = RM1 323 000.00

Making a conclusion
(a) Distance \(PQ = 2.8 \times 10^2\) m
(b) Total cost of land = RM1 323 000.00
The picture shows the Earth with a diameter of 1.2742×10^4 km. Calculate the surface area of the Earth, in km2. State the answer in standard form correct to four significant figures. \[\text{Surface area of sphere} = 4\pi r^2\] and \[\pi = 3.142\]

Solution:

Understanding the problem
- Earth is a sphere.
- Diameter of Earth is 1.2742×10^4 km.
- Answer is in standard form correct to four significant figures.

Planning a strategy
- Radius = \(\frac{\text{diameter}}{2}\).
- Use formula for surface area of sphere to calculate surface area of Earth.

Implementing the strategy

Radius of Earth = \(\left(\frac{1.2742 \times 10^4}{2}\right)\) km

\[= 6.371 \times 10^3\] km

Surface area of Earth

\[= 4\pi r^2\]

\[= 4(3.142)(6.371 \times 10^3)^2\] km2

\[= 510130608.1\] km2

\[= 5.101 \times 10^8\] km2 (4 s.f.)

Making a conclusion

Surface area of Earth is 5.101×10^8 km2.

MIND TEST 2.2d

1. The average daily water consumption in a residential area is 6 950 m3. Calculate the total water consumption, in cubic metres, in the residential area for February 2016. State the answer in standard form correct to three significant figures.

2. The picture above shows the estimated distance of three planets in the solar system from the Sun on a certain day. Calculate the difference in distance, in km, between
 (a) Mercury and Earth
 (b) Mercury and Neptune
 (c) Earth and Neptune

State the answers in standard form correct to three significant figures.
1. Round off the following numbers and decimals correct to the significant figures stated in the brackets.
 (e) 4 854 [1] (f) 5 [3] (g) 0.2763 [2] (h) 35.074 [1]

2. Given $m = 3.2 \times 10^3$ and $n = 5.43 \times 10^4$. Calculate the values of the following operations. State your answers in standard form correct to three significant figures.
 (a) $2mn$ (b) $m + n$ (c) $n - m$ (d) $m^2 + n^2$
 (e) $\frac{3m}{2n}$ (f) $\frac{m + n}{mn}$ (g) $m^2 + n^{-3}$ (h) $n - m^{-3}$

3. Complete the following.
 (a) $2.5 \times 10^2 + 1.35 \times 10^4$
 $= 2.5 \times 10^2 \times 10^4 + 1.35 \times 10^4$
 $= (\underline{2.5} + \underline{1.35}) \times 10^4$
 $= \underline{3.85} \times 10^4$
 (b) $5.74 \times 10^{-3} + 3.4 \times 10^{-6}$
 $= 5.74 \times 10^{-3} \times 10^{-3} + 3.4 \times 10^{-6}$
 $= (\underline{5.74} + \underline{3.4}) \times 10^{-6}$
 $= \underline{9.14} \times 10^{-3}$
 (c) $1.75 \times 10^2 - 4.2 \times 10^{-1}$
 $= 1.75 \times 10^2 \times 10^2 - 4.2 \times 10^{-1}$
 $= (\underline{1.75} - \underline{4.2}) \times 10^2$
 $= \underline{-2.45} \times 10^2$
 (d) $3.7 \times 10^{-2} - 4.3 \times 10^{-5}$
 $= 3.7 \times 10^{-2} \times 10^{-2} - 4.3 \times 10^{-5}$
 $= (\underline{3.7} - \underline{4.3}) \times 10^{-2}$
 $= \underline{-0.6} \times 10^{-2}$

4. A factory produces 72 thousand packets of chips every week. If the factory operates 6 days a week and 18 hours a day, calculate
 (a) the number of packets of chips produced every day. State your answer in standard form.
 (b) the average profit per hour if the net profit of one packet of chips is 32 sen. State the answer to the nearest RM.
5. The estimated population of Malaysia for 2018 is 32 million. Given Malaysia’s land area is 330 803 km2, calculate the population density of Malaysia for each square kilometre for 2018.

State your answer correct to the nearest integer.

Skills Enhancement

1. A newly built community hall required 6 185 pieces of tiles measuring $30 \text{ cm} \times 30 \text{ cm}$ for the floor.
 (a) Calculate the floor area of the hall in square metres. State your answer in standard form correct to three significant figures.
 (b) Given the cost of one piece of tile is RM1.75. Calculate the total cost of the tiles to the nearest RM.

2. Encik Hanif drove his car from Kota Bharu to Kuala Terengganu to visit his son. On the way back to Kota Bharu, Encik Hanif made a stop at Setiu. The map shows the distance and travelling time of Encik Hanif.
 (a) Calculate the average speed, in km h$^{-1}$, of Encik Hanif’s car for the journey
 (i) from Kota Bharu to Kuala Terengganu.
 (ii) from Kuala Terengganu to Setiu.
 (iii) from Setiu to Kota Bharu.
 State the answers correct to three significant figures.
 (b) Encik Hanif is a safety-conscious driver who abides by the speed limit. Is this statement true? State your reasons.

Self Mastery

1. The picture shows three planets in the Solar System.

- Mercury
 [Diameter = 4 879 km]
- Neptune
 [Diameter = 49 244 km]
- Jupiter
 [Diameter = 139 822 km]

 (a) Calculate the surface area, in km2, of all three planets. State the answers in standard form correct to three significant figures.
 [Surface area of sphere = $4 \pi r^2$ and $\pi = 3.142$]
 (b) Based on your answer in (a), calculate the difference in surface area between the largest and smallest planets in the Solar System. State the answer correct to four significant figures.
Chapter 2 Standard Form

2.

The diagram above shows two types of A4-sized paper with different masses. GSM means grams per square metre. Calculate the mass of one piece of A4-sized paper, in grams for
(a) 70 GSM
(b) 80 GSM
State the answers in standard form correct to three significant figures.

PROJECT

1. Look at the pictures below. Obtain the data relevant to the required measurement. Your answers should be in standard form.

2. You can surf various websites or refer to reference books to obtain interesting data related to the pictures below.
 (a) Mass
 (b) Population

 (c) Distance
 (d) Magnitude

3. Obtain other interesting facts that involve calculations in standard form.

4. Present your findings using multimedia applications.
Significant figure shows the level of **accuracy** of a measurement. All digits are significant figures except the zero before the first non-zero digit.

(a) 0.023 (2 s.f.)
(b) 0.102 (3 s.f.)
(c) 1.200 (4 s.f.)
(d) 10 518 (5 s.f.)

For **integers**, the value of the significant figure for **zero** as the last digit depends on the **required level of accuracy**.

(a) 93 000 – 5 s.f. (nearest one)
(b) 93 000 – 4 s.f. (nearest ten)
(c) 93 000 – 3 s.f. (nearest hundred)
(d) 93 000 – 2 s.f. (nearest thousand)

Rounding off a number to a **certain number of significant figures**.

(a) 2 853
 3 000 (1 s.f.)
 2 900 (2 s.f.)
 2 850 (3 s.f.)
(b) 62.54
 60 (1 s.f.)
 63 (2 s.f.)
 62.5 (3 s.f.)
(c) 0.02704
 0.03 (1 s.f.)
 0.027 (2 s.f.)
 0.0270 (3 s.f.)

Standard form is written as \(A \times 10^n \) where \(1 \leq A < 10 \) and \(n \) is an integer.

Changing single numbers to **standard form** and vice versa.

(a) 534 000 = 5.34 \times 10^5
(b) 0.000 534 = 5.34 \times 10^{-4}
(c) 2.763 \times 10^4 = 27 630
(d) 2.763 \times 10^{-4} = 0.002 763

Basic operations (\(+, -, \times, \div\)) involving numbers in **standard form**.

(a) \(S \times 10^n + T \times 10^n \)
 \(= (S + T) \times 10^n \)
(b) \(S \times 10^n - T \times 10^n \)
 \(= (S - T) \times 10^n \)
(c) \((S \times 10^n) \times (T \times 10^n) \)
 \(= (S \times T) \times 10^{n+n} \)
(d) \((S \times 10^n) \div (T \times 10^n) \)
 \(= (S \div T) \times 10^{n-n} \)
At the end of this chapter, I can:

1. Explain the meaning of significant figure and thus determine the number of significant figures of a number.
2. Round off a number to a certain number of significant figures.
3. Recognise and write numbers in standard form.
4. Perform basic arithmetic operations involving numbers in standard form.
5. Solve problems involving numbers in standard form.

EXPLORING MATHEMATICS

1. Get into groups.
2. By using the various sources available, identify several measurement values in daily life that are very small or very big. For example,
 - Hard disk (1 terabyte)
 - One water molecule (0.1 nanometer)
 - One virus (1 micrometer)
3. Prepare a report on your findings using multimedia applications.
4. Present your report.
5. Obtain additional information from the presentations by other groups.
6. Discuss the advantages of using standard form in various fields.